Il
principio antropico [›››](trovo piuttosto deludente, per la sua poca scientificita', la pagina della wikipedia italiana sul principio antropico, per questo ho linkato quella in inglese; lo spirito wiki vorrebbe che, di conseguenza, mi mettessi io stesso a contribuire a migliorare quella pagina; e non e' detto che non trovero' un po' di tempo per farlo...)[‹‹‹], si sa, lascia sempre molto perplessi. Anche quando non scade in una qualche formulazione filosofica (nel senso negativo del termine) di delirio
te(le)ologico, rischia di essere una semplice tautologia, priva di reale potere esplicativo. Era naturale, dunque, che rimanessi un po' sorpreso, positivamente, nel venire a sapere che, in un particolare ambito di termodinamica applicata alla cosmologia, e' possibile applicare il principio antropico in maniera significativa, non tautologica, per
spiegare davvero dei fatti precisi del nostro universo.
Ma come fai ad essere cosi' sicuro, mi chiederete voi, che anche in questo caso non si tratti di uno dei soliti nebulosi tentativi di mascherare da spiegazione una vuota tautologia? Be', e' semplice — e questo e' stato il motivo della sorpresa piu' grande: perche' in questo caso si dimostra che il principio antropico non spiegherebbe affatto l'universo cosi' come ce lo ritroviamo!
Per chi non mastica l'inglese, per chi e' curioso ma solo fino a un certo punto, per chi vuole qualche indizio piu' concreto per decidere se imbarcarsi nella lettura... insomma: provo a riassumere (ma, ahime', non saranno ugualmente poche righe...).
Semplifichero' molto: come al solito tali questioni generali offrono mille spunti di divagazioni e approfondimenti, ma cerchero' di restare circoscritto al tema in questione.
Il contesto e' quello della freccia (termodinamico-cosmologica) del tempo. Come e' possibile che da le leggi fisiche fondamentali (microscopiche) perfettamente simmetriche rispetto ad inversione temporale venga fuori un universo spiccatamente asimmetrico come il nostro, in cui ricordiamo il passato e non il futuro? Siccome l'irreversibilita' temporale che osserviamo e' essenzialmente macroscopica e di natura entropica, la risposta piu' accreditata e' di tipo statistico: avere delle molecole di gas tutte raccolte in un angolo della stanza e' semplicemente enormemente piu' improbabile che averle distribuite per tutta la stanza. Chiaramente questa e' solo il primo passo per una vera risposta, perche' di fatto abbiamo semplicemente spostato il problema. Se l'universo parte in uno stato a bass(issim)a entropia, e' naturale che evolva asimmetricamente verso uno stato piu' disordinato. Ma il punto ora e': come mai l'universo e' cominciato (o si e' trovato a un certo punto) in uno stato a bassa entropia?
Ed e' qui che entra in gioco il (una versione del) principio antropico.
Come al solito, per poter essere tirato in ballo, bisogna assumere di avere a disposizione piu' scenari di universo possibili, per poter tirare conclusioni a posteriori basate sul dato di fatto della nostra esistenza:
se un universo non avesse questa e quest'altra caratteristica, non potremmo essere qui a discuterne e quindi, almeno a posteriori, e' naturale che il nostro universo sia fatto cosi' e cosi'.
Non e' necessario ricorrere a meccanismi di multi-universo esotici e controversi come quelli dell'interpretazione a molti-mondi della meccanica quantistica; e' sufficiente per esempio un universo temporalmente (spazialmente) infinito che possa attraversare (contenere) diverse fasi storiche (regioni) in una delle quali noi ci ritroviamo ad esistere.
La spiegazione che il principio antropico prova a suggerire, dunque, e' relativamente semplice.
Strettamente parlando, l'entropia non e' davvero vincolata a crescere, semplicemente e' piu' probabile che cresca. In una situazione stazionaria ad entropia saturata, ci saranno fluttuazioni temporalmente e spazialmente localizzate in cui l'entropia si ritrovera' un po' diminuita e un po' di ordine, per puro caso, verra' creato (le molecole diffuse nella stanza possono, con abbastanza pazienza, ritrovarsi per caso un po' piu' raccolte in un angolo). Poi, chiaramente, per le stesse ragioni probabilistiche, quel po' di ordine verra' presto disfatto seguendo un "normale" cammino ad entropia crescente, ma avendo abbastanza tempo e spazio a disposizione, fluttuazioni locali potranno presentarsi. A questo punto prende la parola il principio antropico e tutto sembra incastrarsi perfettamente: e' naturale, dice, che noi ci si ritrovi in una di queste fluttuazioni "felici", perche' solo qui potrebbe esserci qualcuno come noi ad osservare un ordine e chiedersi da dove venga: altrove e' solo noiosa stasi entropica.
Bene. Ci sarebbero mille obiezioni, piu' o meno tecniche, a questa presunta spiegazione, ma prendiamola pure per buona, come affermazione di possibilita' e veniamo al punto, cuore del post che vi ho linkato.
Il fatto e' che se vogliamo dare un valore significativo al gioco dei molti universi, o delle molte "fasi entropiche" di un universo infinito, non possiamo limitarci a giustificare la
possibilita' che esistano regioni come l'universo in cui viviamo, caratterizzate da un (passato con) basso valore di entropia. Tanto varrebbe, allora, limitarsi ad accettare come fatto bruto che viviamo in un universo fatto cosi' e cosi' e basta. Se davvero vogliamo credere allo scenario dei multi-universo dobbiamo andare fino in fondo e considerare anche altre eventuali previsioni che da esso discendono
condizionate alla nostra esistenza:
posto che il nostro universo mostra la caratteristica X (l'essere un'isola a bassa entropia), quale altra caratteristica Y ci aspettiamo di osservare, a partire dalle caratteristiche generali dei molti-universi di cui il nostro rappresenta un istanza?
Ed e' qui che entra in gioco, pittorescamente, un cervello di Boltzmann.
Ricordiamoci che le fluttuazioni di entropia sono molto rare. Piu' ordine crea, piu' rara e' la fluttuazione. Assumere, dunque, che la bassa entropia del nostro universo e' dovuta alla necessita' di permettere la vita intelligente, si porta dietro una conseguenza piuttosto forte (e clamorosa): dovremmo infatti trovarci in un universo corrispondente alla fluttuazione piu' piccola possibile che consenta lo sviluppo della vita. E la piu' piccola fluttuazione compatibile con la vita non e' altro che un cervello di Boltzmann: nel mare dell'equilibrio termodinamico, per caso una fluttuazione raccoglie qualche grado di liberta' dell'universo a formare un cervello cosciente con giusto quel minimo di apparati sensoriali per poter guardarsi intorno e giusto per quell'attimo sufficiente ad esclamare "Ehi! Esisto!" e poi — puff! — sparire nuovamente nel quieto e noioso bagno entropico.
Eh, si', ma quanto rara sara' mai una tale fortuita fluttuazione?!?
Enormemente piu' probabile della fluttuazione che invece crea un intero universo come il nostro capace di ospitare la vita!
Ma si puo' anche fare a meno dei cervelli di Boltzmann. Quel che vediamo ora e' solo un'istantanea dell'universo piuttosto grossolana: non abbiamo risoluzione sufficiente per distinguere lo stato microscopico di quel che vediamo alla nostra scala. Posto dunque che ci troviamo in questo stato a partire da una fluttuazione casuale, qual e' la fluttuazione piu' probabile con cui si puo' giungere qui? Sarebbe naturale pensare ad un'universo che si espande, con galassie che si formano pian piano
et cetera. Ma a partire soltanto da quel che abbiamo (fotoni nei nostri telescopi), se tutte le possibili storie dell'universo compatibili con quel che osserviamo oggi sono ugualmente probabili, la maggior parte di queste storie sara' costituita da una gran casino in cui ad un certo punto una cospirazione incredibile ci da l'impressione di un passato ordinato. E' molto piu' probabile, cioe', che l'impressione di un universo passato ad entropia ancora piu' bassa sia letteralmente un accidente! Notate: non ci sitamo chiedendo "che tipo di universo passato tende naturalmente ad evolvere nell'universo che vediamo ora?", bensi' "che caratteristiche hanno la maggior parte degli universi che
possono evolvere nell'universo che vediamo ora?". E la risposta e', appunto, che la maggior parte di quegli universi sono dei placidi universi stazionari ad entropia massima.
[›››]Come? vi ricorda tanto la teoria di Grosse e l'ombelico di Adamo? Gia'! (quando si parla di cosmologia alla fine ci si ritrova molto spesso con una fortissima sensazione di aver detto un sacco di stupidate...)[‹‹‹]Ma ora basta, mi fermo qui. Del resto, non avrete mica creduto che avessi trovato la risposta al problema della freccia del tempo! Cosi', su un blog!
Spero pero' che abbiate apprezzato lo spunto di riflessione.